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Abstract

The large gas bubbles underneath the anode in Hall–Héroult cells not only affect the ohmic interelectrode resistance
by decreasing the cross-sectional area available for current transport. They also exhibit a strong effect on the current
distribution in the bubble-free layer, substantially increasing the resistance. Available relationships applied in
aluminium industry do not take this effect into account. A review on attempts to describe the interelectrode
resistance is given, and an improved relationship derived from a finite element model is presented.

List of symbols

A electrode area (m2)
H macrobubble height (m)
H** microbubble height (m)
I current (A)
j local current density (A m)2)
K1 multiplier in Equation 12
K2 multiplier in Equation 20
Kp multiplier in Equation 5
r radial coordinate (m)
R resistance (V A)1)
RA radius of the electrode area pertinent to one macrobubble (m)
Rb macrobubble mean radius (m)
U interelectrode voltage drop (V)
Y interelectrode distance (m)
z vertical coordinate (m)

Greek symbols
e void fraction
j electrical conductivity of bubble-free liquid (A V)1 m)1)
jLG electrical conductivity of gas–liquid dispersion (A V)1 m)1)
Q* macrobubble coverage (-)
Q** microbubble coverage (-)

Subscripts
0 no bubbles in interelectrode space
1 bubble-free zone
2 bubble layer
n number of current density vectors

1. Introduction

Various attempts have been made to compose the cell
voltage of industrial alumina reduction cells from the

various voltage components [1–5]. All investigations
show that except for the time immediately prior to the
onset of the anode effect, the largest component is the
voltage drop in the melt. It is usually estimated in such a
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way that the resistance of the bubble layer underneath
the anode is simply added to the resistance of the pure
melt in the lower part of the interelectrode gap. This
space is essentially free of bubbles, and one confines the
problem to assume a fully vertical, undisturbed current
flow. A close look shows that this procedure is inade-
quate.

The aim of the present paper is to summarise the most
important of the available equations for the resistance of
a layer with uniformly distributed bubbles and to
discuss their usefulness for Hall–Héroult cells. Then
the effect of the large size of gas bubbles on the
resistance of the bubble layer and particularly on the
bubble-free lower zone is analysed, and an improved
equation is proposed.

2. Fine bubble dispersions

Hyde and Welch [6] compiled numerous equations from
the literature to describe the incremental interelectrode
resistance of bubbles under horizontally orientated
electrodes. However, these equations are not uncondi-
tionally applicable to alumina reduction cells.

For the case of uniform bubble distribution several
theoretical equations are available of which the most
familiar are those due to Maxwell [7]:

jLG

j
¼ 1 � 3e

2 þ e
ð1Þ

and Bruggeman [8]:

jLG

j
¼ ð1 � eÞ1:5 ð2Þ

Obviously the controlling parameter is the volume
fraction of gas e, commonly termed the ‘void fraction’.
These equations were compared with each other
and with further equations [9–12] from which it
was shown that those differences are small compared
with the uncertainty of estimating realistic e values [10,
13–15].

3. Bubble curtain

In alumina reduction cells, as well as in most other cells,
the void fractions e varies within the interelectrode
space. A variation in the flow direction only was taken
into account in the classical paper by Tobias [16] to
estimate the current distribution of electrodes forming
the walls of such channels. Alternatively, Equations 1
and 2 can approximately be applied to a bubble layer of
thickness H. This is the ‘bubble curtain’ adjacent to the
gas-evolving electrode, whereas the remaining space is
essentially free of bubbles. For this case particular
equations have been derived [17–19]. If e denotes the

volume fraction of gas in the bubble layer, H its
thickness and Y the interelectrode distance, the incre-
mental resistance DR induced by gas bubbles may be
calculated from

DR
R0

¼ H
Y

j
jLG

� 1

� �
ð3Þ

with Equation 2 leading to

DR
R0

¼ H
Y

ð1 � eÞ�1:5 � 1
h i

ð4Þ

Alternatively, a steady variation of the void fraction
[20–22] was assumed. It is now clear that all these
models are useful only under particular conditions,
because instabilities in the two-phase flow may easily
disturb the bubble layer near the electrode. The phe-
nomenon was studied theoretically [23, 24] and experi-
mentally [25] and estimates of the instability conditions
were proposed [26, 27]. Recent flow simulations illus-
trate the complexity of the processes [28].

The effect of single bubbles adhering to an electrode
[29] and of a closely packed planar array of spheres [30]
was studied by Sides and Tobias. It was later shown [31]
that their results can be simplified by replacing void
fraction e with the bubble coverage Q, that is, the
fraction of the electrode surface shadowed by adhering
bubbles,

DR
R0

¼ H
Y
� 0:9015 HKp ð5Þ

where Kp ¼ 2–3 [29]. Another simple design equation
for the incremental resistance of a bubble curtain of one
bubble diameter thickness is obtained from Equation 4
by replacing the void fraction with the bubble coverage
[31],

e ¼ 2

3
H ð6Þ

Dukovic and Tobias later agreed that to achieve a close
approximation, the voltage increment due to attached
bubbles can be calculated solely on the basis of this area
loss [32]. Further studies were conducted by Wilson and
Hulme [33] and by Lanzi and Savinell [34].

4. Conventional relationships for Hall–Héroult cells

Equations of these types seem to be applicable to
alumina reduction cells, because here a gas–liquid layer
exists underneath the anode, whereas the rest of the
interelectrode space is essentially bubble-free. If
the thickness of the bubble layer equals the average
height H of a single bubble and Q* denotes the bubble
coverage of these bubbles, Equation 3, may be approxi-
mated by
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DR
R0

¼ H
Y

1

1 � H� � 1

� �
ð7Þ

However, there are two objections to Equation 7, one
being unimportant, the other one being very significant:

It is known that in addition to those large bubbles
much smaller ones with a diameter of less than 0.4 mm
[35, 36] exist in contact with the anode. If these
microbubbles cover a fraction Q** of the anode area
not covered by macrobubbles, and their average height
is H**, the voltage drop is more accurately described by

jU ¼ I
A

H��
ð1 � H�Þð1 � H��Þ þ

H � H��
1 � H� þ Y � H

� �
ð8Þ

In the absence of bubbles the voltage drop is

jU0 ¼
I
A
Y ð9Þ

giving

U
U0

¼ 1 � H
Y
þ 1

1 � H�
H
Y
þ H��

Y
1

1 � H�� � 1

� �� �
ð10Þ

A numerical estimate with H** ¼ 0.4 mm and real-
istic values of Q** shows that the microbubble resis-
tance is negligible as previously stated [5] to result in

U
U0

¼ 1 þ H
Y

1

1 � H� � 1

� �
¼ H

Y
1

1 � H� þ
Y � H

Y

ð11Þ

in agreement with Equation 7. Various equations of this
type have been applied [3, 6, 36–38].

The essential objection to Equations 7 or 11 remains.
These equations, as well as Equations l and 2, are
applicable only to fine distributions of the dispersed
phase (gas bubbles) in the continuous phase (electrolyte
liquid). This condition is commonly met for smooth gas
release and if the bubble size is small compared with the
dimensions of the interelectrode gap, that is, for vertical
electrodes and horizontal electrodes facing upwards,
whereas in aqueous electrolyte solutions small and
nearly spherical bubbles with a diameter of about
0.05 mm are formed. In this case, the current outside
the bubble layer is sufficiently uniformly distributed and
normal to the electrode surface. Then the bubble-free
volume below the bubbles has no effect on the incre-
mental voltage drop.

The shape and size of the bubbles formed in alumina
reduction cells are completely different. Contrary to
some aqueous electrolyses, the anodes in aluminium
production have neither slots nor holes to facilitate safe
smooth gas release, and the anodes are also very large.
Based partly on direct observations of alumina reduc-

tion cells, and partly on evaluation of physical gas–
water models [39] it is generally accepted that at the
underside of anodes near-spherical bubbles are formed,
which cannot escape fast enough from the interelectrode
gap and coalesce to form very large bubbles.

Moreover, the wettability of anodes in Hall–Héroult
cells is poor; the contact angle in cryolite melts is much
larger than in aqueous solutions. Both particularities
result in extraordinarily large gas bubbles. The macro-
bubbles assume the form of a large sheet with a thick
bubble front and a thinner long trailing portion, the
height of which approaches a limiting value of about
5 mm, as is known from visual observation [38, 39] and
confirmed by estimates based on property data, parti-
cularly on wettability [40]. The size of macrobubbles
may grow up to 100 mm [35] or 300 mm in the
longitudinal dimension of bubbles in the direction of
their motion [39]. So the bubble layer moving in contact
with the anode surface comprises macrobubbles, the
volumes of which are given as about 130 ml [39] or up to
400 to 700 ml [41] in addition to the above mentioned
microbubbles.

This geometry causes a strongly nonuniform current
distribution in the bubble-free zone. The flow of the
electrical current is significantly diverted from the
vertical direction and substantial horizontal components
exist, which contribute to an increase in the ohmic
voltage drop in the bubble-free zone. A correction,
unnecessary in the case of only small bubbles, is
required.

5. Improved relationship for Hall–Héroult cells

Zoric and Solheim studied the anodic current distribu-
tion affected by bubbles and made numerical calcula-
tions of the incremental voltage drop expressed by a
relationship applicable to their particular conditions
[42]. An additional attempt, based on a mathematical
model, was made explicitly taking account of the
additional voltage drop in the bubble-free zone by
introducing an additional term [5],

U
U0

¼ 1 þ H
Y

H�
1 � H� þ 0:14 H� Rb

Y � H
ð12Þ

or

DR
R0

¼ H
Y

H�
1 � H� þ 0:14 H� Rb

Y � H
ð13Þ

This equation is generally applicable to gas-evolving
electrodes facing downwards. However, the new term is
unsatisfactory, because the following conditions must be
met:

U
U0

¼ 1 at H� ¼ 0 ð14Þ
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U
U0

! 1 at H� ! 1 ð15Þ

U
U0

¼ 1 at
RA

Y � H
¼ 0 ð16Þ

U
U0

¼ 1

1 � H� ¼ 1 þ H�
1 � H� at

Y � H
RA

¼ 0 ð17Þ

Equation 12 does not meet the conditions of Equations
16 and 17. Therefore, an extension of Equation 11

U
U0

¼ H
Y

1

1 � H� þ ð1 þ K1Þ
Y � H

Y

� �

¼ 1 þ H
Y

1

1 � H� � 1

� �
þ K1 1 � H

Y

� �
ð18Þ

for the relative voltage drop and

DR
R0

¼ H
Y

H�
1 � H� þ K1 1 � H

Y

� �
ð19Þ

for the relative incremental resistance is introduced. The
terms on the right-hand side of Equation 19 refer
separately to the bubble layer and to the bubble-free
layer, respectively, where K1 > 0. A form meeting all
the conditions (Equations 14–17) is

U
U0

¼ 1 þ H
Y

H�
1 � H�

þ 1 � H
Y

� �
H�

1 � H�
1

1 þ K2

ffiffiffiffiffiffiffi
H�p

Y�H
Rb

ð20Þ

presenting a complex, but reasonable form of the
unknown factor K1 in Equations 18 and 19.

6. Finite element method

To obtain the unknown value of K2 in Equation 20 the
real geometry of the interelectrode space with exactly
one macrobubble was substituted by a model shown in

Figure 1. The top area (anode) is partly covered by a
bubble of height H and radius Rb. The radius RA of the
detail of the anode area is interrelated with the bubble
radius through the macrobubble coverage

H� ¼ Rb

RA

� �2

ð21Þ

The electroactive area of the anode and the bottom area
(cathode) are assumed equipotential. The field is rota-
tionally symmetric and varies with the radius r and the
height z.

The finite element method (FEM) was applied to
study the form of the field and the current distribution at
the cathode. Typical results are shown in Figures 2–4. It
is seen from Figure 4 that the cathodic current density j
in the centre of the field is small and attains a maximum
value at the outer edge of the volume, r ¼ RA.

The total current results from integration of the
cathodic current density values,

I ¼
Z RA

0

jðrÞ2prdr ð22Þ

approximated by a numerical integration,

I ¼
XnA

n¼1

jn 2p
n
nA

RA

� �
RA

nA
¼ 2

pR2
A

n2
A

XnA

n¼1

njn ð23Þ

Fig. 1. Geometry of the interelectrode space.

Fig. 2. Potential lines in the interelectrode space. Q* ¼ 0.5, Rb ¼ 100 mm, H ¼ 5 mm, Y ¼ 45 mm.
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where n denotes the number of current density vectors
from n ¼ 1 near the axis to n ¼ nA at r ¼ RA. With the
voltage drop in the absence of bubbles

U0 ¼
I

pR2
Aj

Y ð24Þ

one obtains the relative voltage drop at constant current
with and without bubble as

I0
I
¼ U

U0
¼ U0j

Y
n2

A

2
PnA

n¼1 njn
ð25Þ

Calculations were conducted for some selected values
of the bubble coverage from the data obtained from
application of FEM. Results are shown in Figure 5,
illustrating the strong effect of the deviation of the

current lines in the bubble-free zone. Calculated values
may be approximated with high accuracy by setting
K2 ¼ 5 in Equation 20 to give the ohmic voltage drop in
the interelectrode space,

U
U0

¼ 1 þ H�
1 � H�

H
Y
þ

1 � H
Y

1 þ 5
ffiffiffiffiffiffiffi
H�p

Y�H
Rb

 !
ð26Þ

The relative incremental resistance is

DR
R0

¼ 1

1 � H� � 1

� �
H
Y
þ

1 � H
Y

1 þ 5
ffiffiffiffiffiffiffi
H�p

Y�H
Rb

 !
ð27Þ

Equations 26 and 24 are design equations for practical
purposes. The major application problem is a realistic
estimate of the representative bubble radius Rb and the

Fig. 3. Current vectors in the interelectrode space. Q* ¼ 0.5, Rb ¼ 100 mm, H ¼ 5 mm, Y ¼ 45 mm.

Fig. 4. Distribution of the local cathodic current density j. Q* ¼ 0.5, Rb ¼ 100 mm, H ¼ 5 mm, Y ¼ 45 mm.
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macrobubble coverage Q*. As seen from Figure 6, the
incremental resistance of the bubble-free zone is strongly
affected by the macrobubble size.

Comparison with Equation 7 clearly shows that the
last term in the second brackets in Equation 27 cannot
be neglected, that is, the components of current flow
parallel to the electrode surfaces must not be ignored.
Figure 5 shows a comparison of Equations 26 or 27 with
the conventional Equation 7 and the unsatisfactory
attempt Equations 12 and 13.

7. Conclusion

In Hall–Héroult cells the large, flat gas bubbles in
contact with anodes facing downwards substantially
affect the current distribution in the bubble-free zone of
the melt below the bubble layer. The common practice
of neglecting the resulting increase in the incremental
electrical resistance induces serious errors in the largest
component of the cell voltage. The conventionally
applied Equation 7 delivers values which are by far
too low for industrial cells.

Equation 26 for the relative ohmic interelectrode
voltage drop or Equation 27 for the incremental
interelectrode resistance are recommended for practical
application.
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